
CS267 L6 Data Parallel Programming.1 Lucas Sp 2000

CS 267 Applications of Parallel Computers

Lecture 6:
Distributed Memory (continued)

Data Parallel Architectures and Programming

Bob Lucas

Based on previous notes by James
Demmel and David Culler

www.nersc.gov/~dhbailey/cs267

CS267 L6 Data Parallel Programming.2 Lucas Sp 2000

Recap of Last Lecture

° Distributed memory machines
• Each processor has independent memory

• Connected by network

- topology, other properties

° Cost =
 #messages * αααα + #words_sent * ββββ + #flops * f + delay

° Distributed memory programming
• MPI

• Send/Receive

• Collective Communication

• Sharks and Fish under gravity as example

CS267 L6 Data Parallel Programming.3 Lucas Sp 2000

Outline

° Distributed Memory Programming (continued)
• Review Gravity Algorithms

• Look at Sharks and Fish code

° Data Parallel Programming
• Evolution of Machines

• Fortran 90 and Matlab

• HPF (High Performance Fortran)

CS267 L6 Data Parallel Programming.4 Lucas Sp 2000

Example: Sharks and Fish

° N fish on P procs, N/P fish per processor
• At each time step, compute forces on fish and move them

° Need to compute gravitational interaction
• In usual N^2 algorithm, every fish depends on every other fish

 force on j = Σ Σ Σ Σ (force on j due to k)

• every fish needs to “visit” every processor, even if it “lives” on
one

° What is the cost?

k=1:N
k != j

CS267 L6 Data Parallel Programming.5 Lucas Sp 2000

2 Algorithms for Gravity: What are their costs?

Algorithm 1

 Copy local Fish array of length N/P to Tmp array
 for j = 1 to N
 for k = 1 to N/P, Compute force from Tmp(k) on Fish(k)
 “Rotate” Tmp by 1
 for k=2 to N/P, Tmp(k) <= Tmp(k-1)
 recv(my_proc - 1,Tmp(1))
 send(my_proc+1,Tmp(N/P)

Algorithm 2

 Copy local Fish array of length N/P to Tmp array
 for j = 1 to P
 for k=1 to N/P, for m=1 to N/P, Compute force from Tmp(k) on Fish(m)
 “Rotate” Tmp by N/P
 recv(my_proc - 1,Tmp(1:N/P))
 send(my_proc+1,Tmp(1:N/P))

What could go wrong? (be careful of overwriting Tmp)

CS267 L6 Data Parallel Programming.6 Lucas Sp 2000

More Algorithms for Gravity

° Algorithm 3 (in sharks and fish code)
• All processors send their Fish to Proc 0

• Proc 0 broadcasts all Fish to all processors

° Tree-algorithms
• Barnes-Hut, Greengard-Rokhlin, Anderson

• O(N log N) instead of O(N^2)

• Parallelizable with cleverness

• “Just” an approximation, but as accurate as you like (often only a
few digits are needed, so why pay for more)

• Same idea works for other problems where effects of distant
objects becomes “smooth” or “compressible”

- electrostatics, vorticity, …

- radiosity in graphics

- anything satisfying Poisson equation or something like it

• May talk about it in detail later in course

CS267 L6 Data Parallel Programming.7 Lucas Sp 2000

Examine Sharks and Fish Code

° www.cs.berkeley.edu/~demmel/cs267_Spr99/Lectures/fish.c

CS267 L6 Data Parallel Programming.8 Lucas Sp 2000

Data Parallel Machines

CS267 L6 Data Parallel Programming.9 Lucas Sp 2000

Data Parallel Architectures

° Programming model
• operations are performed on each element of a large (regular)

data structure in a single step

• arithmetic, global data transfer

° A processor is logically associated with each data
element

• A=B+C means for all j, A(j) = B(j) + C(j) in parallel

° General communication
• A(j) = B(k) may communicate

° Global synchronization
• implicit barrier between statements

° SIMD: Single Instruction, Multiple Data

Control
Processor

P-M P-M P-M° ° °

P-M P-M P-M° ° °

P-M P-M P-M° ° °

CS267 L6 Data Parallel Programming.10 Lucas Sp 2000

Vector Machines

° The Cray-1 and its successors (www.sgi.com/t90)
• Load/store into 64-word Vector Registers, with strides: vr(j) = Mem(base + j*s)

• Instructions operate on entire vector registers: for j=1:N vr1(j) = vr2(j) + vr3(j)

vector
registers

pipelined function units

highly interleaved
semiconductor (SRAM)
memory

° No cache, but very fast (expensive) memory
° Scatter [Mem(Pnt(j)) = vr(j)] and Gather [vr(j) = Mem(Pnt(j)]
° Flag Registers [vf(j) = (vr3(j) != 0)]
° Masked operations [vr1(j) = vr2(j)/vr3(j) where vf(j)==1]
° Fast scalar unit too

CS267 L6 Data Parallel Programming.11 Lucas Sp 2000

Use of SIMD Model on Vector Machines

VP0 VP1 VP63

vr0

vr1

vr31

vf0
vf1

vf31

64 bits

1 bit

General
Purpose

Registers
(32)

Flag
Registers

(32)

Virtual Processors (64)

vcr0

vcr1

vcr15

Control
Registers

32 bits

CS267 L6 Data Parallel Programming.12 Lucas Sp 2000

Evolution of Vector Processing

° Cray (now SGI), Convex, NEC, Fujitsu, Hitachi,…

° Pro: Very fast memory makes it easy to program
• Don’t worry about cost of loads/stores, where data is (but memory banks)

° Pro: Compilers automatically convert loops to use vector instructions
• for j=1 to n, A(j) = x*B(j)+C(k,j) becomes sequence of vector instructions

that breaks operation into groups of 64

° Pro: Easy to compile languages like Fortran90

° Con: Much more expensive than bunch of micros on network

° Relatively few customers, but powerful ones

° New application: multimedia
• New microprocessors have fixed point vector instructions (MMX, VIS)

• VIS (Sun’s Visual Instruction Set) (www.sun.com/sparc/vis)

- 8, 16 and 32 bit integer ops

- Short vectors only (2 or 4)

- Good for operating on arrays of pixels, video

CS267 L6 Data Parallel Programming.13 Lucas Sp 2000

Data parallel programming

CS267 L6 Data Parallel Programming.14 Lucas Sp 2000

Evolution of Data Parallel Programming

° Early machines had single control unit for multiple
arithmetic units, so data parallel programming was
necessary

° Also a natural fit to vector machines

° Can be compiled to run on any parallel machine, on
top of shared memory or MPI

° Fortran 77

 -> Fortran 90

 -> HPF (High Performance Fortran)

CS267 L6 Data Parallel Programming.15 Lucas Sp 2000

Fortran90 Execution Model (also Matlab)

• Sequential composition of parallel (or scalar) statements
• Parallel operations on arrays

• Arrays have rank (# dimensions), shape (extents),
 type (elements)

– HPF adds layout
• Communication implicit in array operations
• Hardware configuration independent

Main

Subr(…)

CS267 L6 Data Parallel Programming.16 Lucas Sp 2000

Example: gravitational fish
 integer, parameter :: nfish = 10000

 complex fishp(nfish), fishv(nfish), force(nfish), accel(nfish)

 real fishm(nfish)

. . .

 do while (t < tfinal)

 t = t + dt

 fishp = fishp + dt*fishv

 call compute_current(force,fishp)

 accel = force/fishm

 fishv = fishv + dt*accel

 ...

 enddo

. . .

 subroutine compute_current(force,fishp)

 complex force(:),fishp(:)

 force = (3,0)*(fishp*(0,1))/(max(abs(fishp),0.01)) - fishp

 end

*

+

parallel assignment

pointwise parallel operator

CS267 L6 Data Parallel Programming.17 Lucas Sp 2000

Array Operations

Parallel Assignment

A = 0 ! scalar extension

L = .TRUE.

B = [1,2,3,4] ! array constructor

X = [1:n] ! real sequence [1.0, 2.0, . . .,n]

I = [0:100:4] ! integer sequence [0,4,8,...,100]

C = [50[1], 50[2,3]] ! 150 elements, first 1s then repeated 2,3

D = C ! array copy

Binary array operators operate pointwise on conformable arrays

• have the same size and shape

CS267 L6 Data Parallel Programming.18 Lucas Sp 2000

Array Sections

Portion of an array defined by a triplet in each dimension
• may appear wherever an array is used

A(3) ! third element

A(1:5) ! first five elements

A(1:5:1) ! same

A(:5) ! same

A(1:10:2) ! odd elements in order

A(10:2:-2) ! even in reverse order

A(10:2:2) ! same

B(1:2,3:4) ! 2x2 block

B(1, :) ! first row

B(:, j) ! jth column

CS267 L6 Data Parallel Programming.19 Lucas Sp 2000

Reduction Operators

Reduce an array to a scalar under an associative binary operation

• sum, product

• minval, maxval

• count (number of .TRUE. elements of logical array)

• any, all

simplest form of communication

 do while (t < tfinal)

 t = t + dt

 fishp = fishp + dt*fishv

 call compute_current(force,fishp)

 accel = force/fishm

 fishv = fishv + dt*accel

 fishspeed = abs(fishv)

 mnsqvel = sqrt(sum(fishspeed*fishspeed)/nfish)

 dt = .1*maxval(fishspeed) / maxval(abs(accel))

 enddo

implicit broadcast

CS267 L6 Data Parallel Programming.20 Lucas Sp 2000

Conditional Operation

 force = (3,0)*(fishp*(0,1))/(max(abs(fishp),0.01)) - fishp

could use

 dist = 0.01

 where (abs(fishp) > dist) dist = abs(fishp)

or

 far = abs(fishp) > 0.01

 where far dist = abs(fishp)

or

 where (abs(fishp) .ge. 0.01)

 dist = abs(fishp)

 elsewhere

 dist = 0.01

 end where

No nested wheres. Only assignment in body of the where.
The boolean expression is really a mask array.

CS267 L6 Data Parallel Programming.21 Lucas Sp 2000

Forall in HPF (Extends F90)

FORALL (triplet, triplet,…,mask) assignment

 forall (i = 1:n) A(i) = 0 ! same as A = 0

 forall (i = 1:n) X(i) = i ! same as X = [1:n]

 forall (i=1:nfish) fishp(i) = (i*2.0/nfish)-1.0

 forall (i=1:n, j = 1:m) H(i,j) = i+j

 forall (i=1:n, j = 1:m) C(i+j*2) = j

 forall (i = 1:n) D(Index(i)) = C(i,i) ! Maybe

 forall (i=1:n, j = 1:n, k = 1:n)

 * C(i,j) = C(i,j) + A(i,k) * B(k,j) ! NO

Evaluate entire RHS for all index values (in any order)

Perform all assignments (in any order)

No more than one value for each element on the left (may be checked)

CS267 L6 Data Parallel Programming.22 Lucas Sp 2000

Conditional (masked) intrinsics

 Most intrinsics take an optional mask argument

 funny_prod = product(A, A .ne. 0)

 bigem = maxval(A, mask = inside)

Use of masks in the FORALL assignment (HPF)

 forall (i=1:n, j=1:m, A(i,j) .ne. 0.0) B(i,j) = 1.0 / A(i,j)

 forall (i=1:n, inside) A(i) = i/n

CS267 L6 Data Parallel Programming.23 Lucas Sp 2000

Subroutines

• Arrays can be passed as arguments.

• Shapes must match.

• Limited dynamic allocation

• Arrays passed by reference, sections by value (i.e., a copy is made)

•HPF: either remap or inherit

• Can extract array information using inquiry functions

CS267 L6 Data Parallel Programming.24 Lucas Sp 2000

Implicit Communication

Operations on conformable array sections may require data movement

i.e., communication

 A(1:10, :) = B(1:10, :) + B(11:20, :)

Example: Parallel finite differences

 A’[i] = (A[i+1] - A[i])*dt becomes

 A(1:n-1) = (A(2:n) - A(1:n-1)) * dt

Example: smear pixels

 show(:,1:m-1) = show(:,1:m-1) + show(:,2:m)

 show(1:m-1,:) = show(1:m-1,:) + show(2:m,:)

CS267 L6 Data Parallel Programming.25 Lucas Sp 2000

Global Communication

 c(:, 1:5:2) = c(:, 2:6:2) ! shift noncontiguous sections

 D = D(10:1:-1) ! permutation (reverse)

 A = [1,0,2,0,0,0,4]

 I = [1,3,7]

 B = A(Ind) ! Ind = [1,2,4] “gather”

 C(Ind) = B ! C = A “scatter” (no duplicates on left)

 D = A([1,1,3,3]) ! replication

CS267 L6 Data Parallel Programming.26 Lucas Sp 2000

Specialized Communication

CSHIFT(array, dim, shift) ! cyclic shift in one dimension

EOSHIFT(array, dim, shift [, boundary]) ! end off shift

TRANSPOSE(matrix) ! matrix transpose

SPREAD(array, dim, ncopies)

CS267 L6 Data Parallel Programming.27 Lucas Sp 2000

Example: nbody calculation

 subroutine compute_gravity(force,fishp,fishm,nfish)

 complex force(:),fishp(:),fishm(:)

 complex fishmp(nfish), fishpp(DSHAPE(fishp)), dif(DSIZE(force))

 integer k

 force = (0.,0.)

 fishpp = fishp

 fishmp = fishm

 do k=1, nfish-1

 fishpp = cshift(fishpp, DIM=1, SHIFT=-1)

 fishmp = cshift(fishmp, DIM=1, SHIFT=-1)

 dif = fishpp - fishp

 force = force + (fishmp * fishm * dif / (abs(dif)*abs(dif)))

 enddo

 end

CS267 L6 Data Parallel Programming.28 Lucas Sp 2000

HPF Data Distribution (layout) directives

° Can ALIGN arrays with other arrays for affinity
• elements that are operated on together should be stored together

° Can ALIGN with TEMPLATE for abstract index space

° Can DISTRIBUTE templates over processor grids

° Compiler maps processor grids to physical procs.

Arrays Arrays or
Templates

ALIGN

Abstract
Processors

DISTRIBUTE

physical
computer

CS267 L6 Data Parallel Programming.29 Lucas Sp 2000

Alignment

A:

B:

ALIGN A(I) WITH B(I)

A:

B:

ALIGN A(I) WITH B(I+2)

C:

B:

ALIGN C(I) WITH B(2*I)

ALIGN D(i,j) WITH E(j,i)

ALIGN D(:,*) with A(:) ALIGN A(:) with D(*,:)

- collapse dimension - replication

?

CS267 L6 Data Parallel Programming.30 Lucas Sp 2000

Layouts of Templates on Processor Grids

° Laying out T(8,8) on 4 processors

(Block, *) (*, Block) (Block, Block)

(Cyclic, *) (Cyclic, Block)(Cyclic, Cyclic)

CS267 L6 Data Parallel Programming.31 Lucas Sp 2000

Example Syntax

Declaring Processor Grids
!HPF$ PROCESSORS P(32)

 !HPF$ PROCESSORS Q(4,8)

Distributing Arrays onto Processor Grids
!HPF$ PROCESSORS p(32)

 real D(1024), E(1024)
!HPF$ DISTRIBUTE D(BLOCK)

 !HPF$ DISTRIBUTE E(BLOCK) ONTO p

CS267 L6 Data Parallel Programming.32 Lucas Sp 2000

Blocking Gravity in HPF
 subroutine compute_gravity(force,fishp,fishm,nblocks)

 complex force(:,B),fishp(:,B),fishm(:,B)

 complex fishmp(nblocks,B), fishpp(nblocks,B),dif(nblocks,B)

!HPF$ Distribute force(block,*), . . .

 force = (0.,0.)

 fishpp = fishp

 fishmp = fishm

 do k=1, nblocks-1

 fishpp = cshift(fishpp, DIM=1, SHIFT=-1)

 fishmp = cshift(fishmp, DIM=1, SHIFT=-1)

 do j = 1, B

 forall (i = 1:nblocks) dif(i,:) = fishpp(i,j) - fishp(i,:)

 forall (i = 1:nblocks) force(i,:) = force(i,:) +

 * (fishmp(i,j) * fishm(i,:) * dif(i,:) / (abs(dif(i,:))*abs(dif(i,:))))

 end do

 enddo

CS267 L6 Data Parallel Programming.33 Lucas Sp 2000

HPF “Independent” Directive

° Assert that the iterations of a do-loop can be
performed independently without changing the
result computed.

• Tells compiler “trust me, you can run this in parallel”

• In any order or concurrently

!HPF$ INDEPENDENT

 do i=1,n

 A(Index(i)) = B(i)

 enddo

CS267 L6 Data Parallel Programming.34 Lucas Sp 2000

Parallel Prefix (Scan) Operations

 forall (i=1:5) B(i) = SUM(A(1:i)) ! forward running sum

 forall (i=1:n) B(i) = SUM(A(n-i+1:n)) ! reverse direction

 dimension fact(n)

 fact = [1:n]

 forall (i=1:n) fact(i) = product(fact(1:i))

or

 CMF_SCAN_op (dest,source,segment,axis,direction,inclusion,mode,mask)

op = [add,max,min,copy,ior,iand,ieor]

CS267 L6 Data Parallel Programming.35 Lucas Sp 2000

Other Data Parallel Languages

• *LISP, C*, DPCE

• NESL, FP

• PC++

• APL, MATLAB, . . .

